91精品国产综合成人,国产精品午夜自在在线精品,国内精品久久久久影院老司,国内精品久久久久久久久野战,国产精品美女久久福利网站,亚洲国产一成人久久精品,国产精品久久久久久一区二区三区

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當前位置: 首頁 > 行業(yè)資訊 > Stem cell research sheds new light on the skin

Stem cell research sheds new light on the skin

 Date:

July 30, 2019
Source:
University of Copenhagen The Faculty of Health and Medical Sciences
Summary:

For the first time, researchers have studied and outlined the development of sebaceous glands in the skin. The study provides greater insight into the development and maintenance of the skin and how cancer mutations affect the behavior of stem cells.

For the first time, researchers from the University of Copenhagen have studied and outlined the development of sebaceous glands in the skin. The study provides greater insight into the development and maintenance of the skin and how cancer mutations affect the behaviour of stem cells.

Most people are familiar with the sebaceous glands which are responsible for moisturising the skin, and during puberty sometimes more so. But even though the glands are a main component of our skin, scientists know surprisingly little about how they form and how they are subsequently maintained.

In a new study, researchers from the Biotech Research & Innovation Centre (BRIC) and the Novo Nordisk Foundation Center for Stem Cell Biology (DanStem) at the University of Copenhagen have gained new insight into how the skin, and in particular the sebaceous gland, forms during development and how it is replenished throughout life. Moreover, they reveal how a mutation often found in cancer affects normal cell behaviour.

'We demonstrate for the first time ever how the sebaceous glands that contribute to the natural moisture of the skin are formed and how they are maintained throughout life by stem cells. This knowledge may be transferred to individuals with sebaceous gland conditions, e.g. acne or very dry skin', says Postdoc Marianne Stemann Andersen from BRIC.

At the same time, the study shows that the behaviour of the stem cells changes when the researchers introduce a specific and frequently found cancer mutation to the skin stem cells. Surprisingly, the mutation did not as expected cause cells to divide more often; instead stem cells had a tendency to generate more stem cells and not mature sebaceous gland cells when they divided.

'In this case, the result is a sebaceous gland which -- similar to tumours -- continues to grow. We hope this knowledge can contribute to the design of better cancer treatment', says Associate Professor and Head of the Study Kim Jensen from BRIC and DanStem.

Difference in Cell Division

In the study, the researchers tracked stem cell division in the skin of live mice. Here individual stem cells were coloured with fluorescent proteins. This enabled the researchers to follow stem cells during a number of cell divisions and essentially generate family trees describing the heritage of individual cells.

During the formation of the sebaceous gland, the researchers found that when a stem cell divided and gave rise to two daughter cells, this more often led to the formation of two new stem cells than into mature sebaceous gland cells. This way, the sebaceous gland continued to grow until it had reached its mature size. At this point the behaviour of the stem cells changed, and new cells only emerged when mature sebaceous gland cells would burst to release their moisturising lipids on the skin and thereby be lost from the sebaceous gland.

In mice where the researchers introduced a specific mutation often found in human cancers into stem cells of the sebaceous gland this behaviour changed dramatically. Here even in adult mice the sebaceous gland continued to grow.

'We used to believe that this mutation led to more frequent cell divisions. However, our research shows that its effect on how often cells divide is very mild. Instead, stem cells with the cancer mutation are much more likely to divide into two new stem cells than generating mature sebaceous gland cells. This explains why the sebaceous gland continues to grow after we introduce this mutation to the skin', says Postdoc Svetlana Ulyanchenko from BRIC.

'In connection with cancer therapies that target cells that divide frequently, this means that cancer cells and normal cells are just as likely to be targets of the treatments. If we are able to determine what controls how often cells divide when mutated, we may be able to develop therapies that specifically affect cancer cells'.

In the future, the research team headed by Associate Professor Kim Jensen wants to expand its analysis to other cancer mutations and study how different mutations in the same cell interplay and change stem cell behaviour. According to the researchers, such studies would offer a main basis for far more effective cancer treatment.

The study is the result of a strong international collaboration headed by Associate Professor Kim Jensen from the University of Copenhagen and involving researchers from the University of Cambridge and Université Cote d'Azur in Nice, France. The results were mainly produced by the three joined first authors: Marianne Stemann Andersen, Edouard Hannezo and Svetlana Ulyanchenko.

Story Source:

Materials provided by University of Copenhagen The Faculty of Health and Medical SciencesNote: Content may be edited for style and length.


Journal Reference:

  1. Marianne Stemann Andersen, Edouard Hannezo, Svetlana Ulyanchenko, Soline Estrach, Yasuko Antoku, Sabrina Pisano, Kim E. Boonekamp, Sarah Sendrup, Martti Maimets, Marianne Terndrup Pedersen, Jens V. Johansen, Ditte L. Clement, Chloe C. Feral, Benjamin D. Simons, Kim B. Jensen. Tracing the cellular dynamics of sebaceous gland development in normal and perturbed statesNature Cell Biology, 2019; DOI: 10.1038/s41556-019-0362-x
达州市| 常山县| 项城市| 凤庆县| 龙里县| 原阳县| 武定县| 通山县| 百色市| 平顶山市| 柳河县| 彭州市| 五河县| 柘荣县| 太谷县| 江川县| 南充市| 龙江县| 鄢陵县| 土默特左旗| 深州市| 高要市| 政和县| 黑山县| 英超| 高安市| 阳新县| 乌拉特后旗| 白沙| 澳门| 巨鹿县| 高邮市| 屏边| 淳化县| 华宁县| 榆树市| 建德市| 韩城市| 治县。| 河源市| 丹江口市|